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ABSTRACT Microtubule asters forming the mitotic spin-
dle are assembled around two centrosomes through the pro-
cess of dynamic instability in which microtubules alternate
between growing and shrinking states. By modifying the
dynamics of this assembly process, cell cycle enzymes, such as
cdc2 cyclin kinases, regulate length distributions in the asters.
It is believed that the same enzymes control the number of
assembled microtubules by changing the “nucleating activity”
of the centrosomes. Here we show that assembly of microtu-
bule asters may be strongly altered by effects connected with
diffusion of tubulin monomers. Theoretical analysis of a
simple model describing assembly of microtubule asters
clearly shows the existence of a region surrounding the
centrosome depleted in GTP tubulin. The number of assem-
bled microtubules may in some cases be limited by this
depletion effect rather than by the number of available
nucleation sites on the centrosome.

A eukaryotic cell constructs a complex molecular machinery,
called the mitotic spindle, in order to assure a precise division
of its duplicated genetic material. The spindle consists mainly
of long protein fibers, microtubules (MTs), assembled around
two organizing centers, often called centrosomes. The MTs
first attach to the duplicated chromosomes, order them in
space, and then actively participate in their physical separation.

The assembly of the mitotic spindle is an example of a
strongly regulated cellular process. An extended network of
cell cycle enzymes is responsible for correct formation of the
spindle, in synchrony with other cellular events. The interac-
tion between these enzymes is mainly biochemical: they act on
one another by introducing specific covalent modifications,
such as phosphorylation or dephosphorylation. The cell cycle
enzymes similarly modify the protein constituents of the
mitotic spindle, in this way regulating its function.

To construct the mitotic spindle and to correctly separate
the duplicated chromosomes, thousands of molecules have to
move, to assemble into larger structures, to exert forces, etc.
The underlying physical processes, such as directional move-
ments, formation of physical connections, pushing, or pulling,
are subject to thermal noise and often lack necessary precision.
It is the role of biochemical regulation to assure that these
physical processes “cooperate” with one another and lead to
the functionally correct result: one copy of the genome in each
daughter cell.

The interplay between physical and biochemical phenomena
in the cell is often quite subtle and it is not easy to separate
their effects. It is safe to say that for all functionally important
tasks, of which the separation of the chromosomes is a good
example, the cell uses mainly biochemical processes. They
provide necessary feedbacks, checkpoints, and other regula-
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tion mechanisms. However, this does not mean that one can
simply neglect the effects of the underlying physical phenom-
ena. In what follows, we illustrate this point by considering an
important event of the assembly of the mitotic spindle—the
formation of MT asters around the two centrosomes.

Formation of Mitotic Microtubule Asters

At the entrance to mitosis, MT structures completely change
their aspect. A nondividing (interphase) cell possesses a dense
network of MTs extending from its nucleus to its periphery. At
early stages of mitosis, this network is replaced by two dynamic
“asters,” which are MT structures organized radially around
the centrosomes (17, 21, 22). The centrosomes separate in
space and form two future poles of the mitotic spindle.
However, before the spindle is fully formed the MTs have to
“catch” the condensed chromosomes, which, after disassembly
of the nucleus, are free to diffuse within the cell.

At the basis of aster formation and of the process of catching
the chromosomes lies an assembly process of MTs called the
dynamic instability (23). This phenomenon differs substan-
tially from the reversible assembly of other polymers. It can be
described, at the simplest level, as two distinct states of
reversible polymerization, with infrequent random transitions
between the states. In one of these states the polymer grows,
in the other it shrinks; the transition from the growing to the
shrinking state is called a catastrophe, the inverse transition is
called a rescue. A MT can grow or shrink over distances of
micrometers (thousands of monomers) before switching into
the other state. Four dynamic parameters define this process:
the growth velocity v, the shrinkage velocity v_, and the
transition rates fi._ (catastrophes) and f_. (rescues). By
analyzing stochastic equations describing the time evolution of
each MT in this simple model, one can predict the existence of
a sharp transition or a threshold between an unlimited or
unbounded growth, with the average growth speed J > 0, and
a steady-state or bounded growth, characterized by a well-
defined MT steady-state length distribution with J = 0 (Fig.
1B). The transition can be reached by varying v, v_, f1_, or
f-+ or simply by crossing some critical value of the monomer
density ¢ = ¢

The presence of the transition provides a very efficient
mechanism for regulation of MT structures; by varying only
slightly the effective parameters of the dynamic instability, the
cell, or more precisely cell cycle enzymes, may change the
distribution of polymer lengths. The relevance of such a
mechanism for mitotic MTs has indeed been demonstrated in
recent experiments with Xenopus egg extracts (1). They have
demonstrated that the dynamic parameters measured in in-
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terphase extracts are such that the MT system is in an
unbounded growth state—i.e., growth of the aster is limited
only by the total amount of tubulin or the size of the cell. In
mitotic extracts, where two central cell cycle enzymes cdc2
cyclin A and cdc2 cyclin B kinases (24) are active, the asters are
in the bounded growth state (Fig. 14). The activity of cdc2
cyclin A kinase seems to modify all four dynamic parameters
(1, 25, 26). Moderate changes are sufficient, however, to drive
the system into the bounded growth state (with the average
length of MTs of the order of 15 wm), because in the interphase
extracts the system seems to be very close to the threshold (J
positive but small). The activity of cdc2 cyclin B kinase, on the
other hand, strongly increases the catastrophe frequency, f. —.
Consequently, the average length of the MTs decreases dras-
tically (to about 3 pum).

Although the biochemical factor(s) responsible for this
spectacular transformation—the substrate(s) of the kinase
activity—still remains to be identified, it seems clear that at the
entrance to mitosis the regulatory biochemical network acts by
modifying the parameters of the dynamic instability, mainly
the frequencies of catastrophes and rescues. In this way, it
changes the morphology of structures formed by MTs. Instead
of a dense network of fibers extending to the cortex of the cell
(grown through an unbounded growth), the cell produces
shorter, more dynamic asters (through a bounded growth),
which are much more efficient for searching for the chromo-
somes. The fact that this change takes place through a tran-
sition process rather than through a gradual one is worth
noting. More importantly, the very existence of this transition
is a robust phenomenon: it does not depend on the details of
the geometry or the exact growth dynamics. This robustness is
crucial and is very general for biological systems.

Diffusion Effects

The simplest model of the dynamic instability assumes that
MTs grow independently of each other and completely ne-
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FiG. 1. (A) Cell cycle enzymes provoke a transition from
unbounded to bounded MT growth at the onset of mitosis: MT
growth on centrosomes in interphase (Left) and mitotic (Right)
Xenopus egg extracts is shown. (Bar = 10 um.) (B) Schematic
plots of individual MT length (L) versus time (¢) (solid lines) for
unbounded (u) and bounded (b) independent MT growth in the
presence of a nucleating surface. Average MT length (dashed
lines) increases in the case of unbounded growth and reaches
a steady-state value in the case of bounded growth.

glects “diffusion” effects—i.e., the possibility that MTs inter-
act with each other through competition for incoming tubulin
dimers. Diffusion effects have been a subject of intensive study
for physical assembly processes such as crystal growth or small
particle aggregation where they are often of crucial impor-
tance (2). However, relatively little effort has been made to
study the role of diffusion for assembly of biological molecules
such as actins or tubulins forming cytoskeletal fibers. The
reason for this is that although the diffusion length Ip (3),
which characterizes the range of depletion of the monomer
pool, can be as big as 10-100 um for a single growing MT, the
amplitude of this perturbation decays quickly to relatively
small values. Thus, for an isolated fiber it seems justified to
neglect the depletion effects (4).

However, for a dense array of MTs assembled through the
dynamic instability, the situation may be very different. For
instance, one can show that for the MTs nucleated by a planar
surface, the depletion region next to the surface controls the
density of growing fibers (3). This happens even if the initial
concentration of GTP-tubulin dimers c% is so high that the
initially nucleated MTs are in a state of unbounded growth (1).
The induced depletion of dimers near the surface alters the
behavior of subsequently nucleated MTs, which are eventually
trapped in a state of bounded growth (1). In consequence, the
total number of MTs that manage to “escape” the surface is
strongly dependent not only on c$ or on the density of nu-
cleation sites so but also on the dimer diffusion constant D and
the exact geometry of assembly.

One could try to extrapolate these results to the case of MTs
nucleated from an organizing center such as a centrosome.
They would mean that, in addition to biochemical regulation
mechanisms such as biochemical controlling of the nucleation
properties of the centrosome (5-8), the density of MTs would
be strongly influenced by a purely physical effect of the
diffusion of tubulin monomers.
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To verify whether these diffusion effects may indeed be
relevant for cellular assembly, we consider the case of MT
asters nucleated radially from a centrosome (instead of the
planar geometry considered before). We still make several
simplifying assumptions by supposing MTs to be perfectly
rigid, centrosomes to be spherical and isotropic, and that MTs
lose dimers only from the distal, “plus” end [i.e., we neglect
tubulin “flux” within the MTs (9)]. We are also obliged to
neglect several plausible but until now little studied effects,
such as a possible dependence of dynamic assembly parameters
on the GDP-tubulin concentration or a possible formation of
new nucleation centers with the increase of ct. (Note, however,
that this last effect would only reinforce the conclusions
presented below.) On the other hand, our model takes into
account many aspects completely neglected in the previous
studies—namely (i) the diffusion of tubulin dimers; (ii) the
dependence of the parameters of dynamic instability on local
concentration of GTP-tubulin, ¢, as measured in recent
experiments (10-12); (iii) the finite regeneration rate of
GDP-tubulin into GTP-tubulin in the solution rich in free GTP
(13); (iv) the finite density of nucleation sites so for MTs on the
centrosome (i.e., the fraction of its surface available for MT
growth).

Solution of the Model

Mean-Field Theory. We use a set of four coupled mean-field
equations, which neglect angular density fluctuations. They
describe the time evolution of the length distributions of
growing, p.(r,t), and shrinking, p_(r,¢), MT tips, and the
densities of both GTP-tubulin, c1(r,f), and GDP-tubulin,
cp(r,t), dimers (r is defined as the distance to the center of the
centrosome). The first two equations correspond to the process
of dynamic instability; the other two describe the change in
tubulin concentrations through (i) the exchange of dimers
between MTs and free subunits; (i) the regeneration of
GTP-tubulin from GDP-tubulin (with the rate k); (iii) tubulin
diffusion (with the diffusion constant D). The equations are

op+=—~frp+ +fosp- = 3,(vips)
0p-=+fe—p+ —f-4p- +v_8,p-

R2

dcr —v+so<r—2)p+ + kep + DV
R2

dcp = +V_So(r_2)p_ - kCD + DVZCD.

Here R is the radius of the centrosome, and the microscopic
length scale (the size of a protein) is set to 1. These equations
are solved by standard numerical techniques, consisting of
a mixture of implicit and explicit discretization schemes to
solve partial differential equations, with the following bound-
ary conditions: ctly=« = ¢%; 3,c1l-=r = 0; 9,CDlr=r = 0; U+p +|r=r
= 75/50; 88 = —V+P+Sol-=r + V_p_sol,=r. Here s (as opposed
to so) is the density of free nucleation sites and 7ct,—g is the
nucleation rate (for simplicity we assume a first-order nucle-
ation process). The results are used to obtain the values for p,
the surface density of MTs. At any time, the surface density of
MTs is given by the product of the density of nucleation sites
and the probability that a given site is occupied by a MT of
nonzero length:

p= SOJ [p+() +p_(ldr.
0

To compare the results with the case of independent MT growth
(neglecting diffusion effects), we solved numerically the corre-
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sponding mean-field equations. They are identical to the first two
of the above equations, with ct = ¢% for all r and .

The values of the parameters are chosen in the following
way: (i) At cr = 10 uM they are set to correspond to typical
values found in interphasic cellular extracts for individual MTs
(1): v+ = 10 pm/min; v— = 15 um/min; f, - = 0.012s7 % f_,
= 0.02 s~1. (i) Since this set of values corresponds to a
near-threshold situation, by varying ¢t we can then easily
explore diffusion effects both below and above the critical
concentration. We obtain the values of the dynamic parame-
ters at other GTP-tubulin concentrations by assuming the
following phenomenological ct dependencies based on recent
experimental data (10-12): v+ = ucr, with 4, independent of
c1; v- = constant; f_. = wct, where o is a constant; fi_
strongly decreasing with increasing cr.

We chose a particular functional form of this last depen-
dence that fits well the available experimental data on catas-
trophe rates in pure tubulin solutions (H. Flyvbjerg, T. E. Holy,
and S.L., unpublished data). It results from the analysis of a
recent phenomenological model of the catastrophes in dy-
namic instability. This model assumes that a MT has at its tip
a stabilizing “cap”; a catastrophe takes place when this cap
disappears. The stabilizing cap grows by addition of new
GTP-tubulin dimers and shrinks with a constant rate at its
other end due to a progressive, induced hydrolysis of the GTP
nucleotides and/or a conformational change of tubulin. In
addition, the cap can decrease in size at any time by a random
“spontaneous event” of hydrolysis and/or of conformational
change taking place along its whole length. How often the size
of this cap shrinks to zero, and in consequence a catastrophe
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Fi1G. 2. (A) MT aster in a state of bounded growth (obtained
through three-dimensional Monte Carlo simulations), showing the
geometry for MT assembly and tubulin diffusion. We consider iso-
tropic growth of perfectly rigid MTs nucleated from a spherical
centrosome with radius R. (B) Corresponding steady-state GTP-
tubulin profile cr in the region surrounding the centrosome, showing
depletion due to the assembly of MTs. c? is the initial concentration
of GTP-tubulin dimers. (C) Average number of nucleated MTs as a
function of so, where 0 < so =< 11s the total surface density of nucleation
sites (i.e., fraction of the centrosome area capable of MT nucleation).
For small so, the number of MTs growing out of the centrosome is
limited by the number of available nucleation sites (“site-limited”
regime), while for large so it is limited by diffusion effects (“diffusion-
limited” regime); see Fig. 4 and text.
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event occurs, depends in this model on only two parameters:
vaB, the average induced shrinkage velocity of the cap; and r,
the rate of spontaneous events per unit length of the cap. We
chose these two parameters to fit the desired catastrophe rate
atct = 10 uM. The results of our calculation are shown forvag
= 6 um/min and r = 655 min~!/um, but similar results were
obtained for vagp = 4 um/min (r = 1076 min~!/um) and vap
= 2 pm/min (r = 1632 min~!/um) (data not shown). The
choice of a particular functional form of the ct dependence of
the catastrophes does not seem crucial; similar results were
also obtained when we assumed a simple exponential depen-
dence: f._ = Ae~°t, where we varied the value of o between
0.2 and 0.5 uM~! (data not shown). Other values used are R
=1 pum; D =5 um?/s (14); k = 0.02 s~ (13); = = 0.15
uM~1/min.

Monte Carlo Simulations. As well as solving the mean-field
equations, we performed three-dimensional Monte Carlo sim-
ulations in order to verify that angular density fluctuations do
not significantly change the results. In these “off-lattice”
simulations a MT-nucleating spherical object (a centrosome)
is centered in a spherical container filled with diffusing
subunits. A MT nucleates whenever a GTP-tubulin subunit
moves close enough to the nucleating sphere, and a MT grows
whenever such a subunit moves close enough to a growing MT
tip. Growing MTs convert to shrinking MTs with some con-
stant probability. Shrinking MTs lose subunits from their tip at
a constant rate; these disassembled GDP-tubulin subunits
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cannot directly stick to growing MT tips but have first to
convert back, at a constant rate, to GTP-tubulin subunits.
Rescues occur when GTP-tubulin subunits adhere—with a low
probability—to shrinking MTs. Catastrophes occur when a MT
cap disappears according to the rules given by the model
described above. We vary the total amount of nucleating
sites—i.e., the total surface available for nucleation, so—by
dividing the nucleating surface into a constant number of
patches of variable size and allowing MTs to be nucleated only
when GTP-tubulin subunits move close enough to these
patches. The parameters are chosen to obtain a MT population
in a state of bounded growth (they roughly mimic typical values
found in mitotic cellular extracts). The average number of
nucleated MTs as well as the radial distribution of GTP-
tubulin subunits are studied after the MT population reaches
its steady state.

Results

An example of MTs (in a state of bounded growth) nucleated
at a spherical centrosome in our Monte Carlo simulations is
shown in Fig. 24. A typical GTP-tubulin profile for this
geometry is depicted in Fig. 2B. Similar curves have been
obtained by numerically solving the mean-field equations,
where one neglects the angular dependence of density fluc-
tuations. It is clear from these curves that a depletion region
forms next to the nucleating surface in a steady state and that

1 ] 1 1
p I (i): c®=10uM > c,
. [ (i): c=8uM < ¢,

15 ¢, (uM) 20

FiG. 3. ) (A4) Mean-field results for time evolution of the density of MTs, p, on the surface of the centrosome (i.e., fraction of the centrosome
area that is covered by MTs) for two different values of initial GTP-tubulin concentration c}: one above (i) and one below (ii) the critical
concentration for unbounded growth (ccr; see text). We compare the case in which diffusion effects are included (solid curves) with the situation
in \.Nhl(':h they are completely neglected (dashed curves). (B) p, as a function of initial bulk GTP-tubulin concentration c§. Symbols (connected by
solid lines) show densities at a finite time typical for experiments (5 min) both including (O) and neglecting (<) diffusion effects. Dashed lines

indicate these densities extrapolated to the infinite time limit.



Colloquium Paper: Dogterom et al.

it affects strongly the assembly (e.g., the average number, (N),
of assembled MTs shown in Fig. 2C; see below).

Fig. 34 shows mean-field results for the time evolution of the
density p of MTs nucleated by a centrosome—i.e., the fraction
of the spherical surface from which MTs are actually growing.
We depict here the solutions for two different values of the
initial concentration cJ, one above and one below the thresh-
old concentration c.,. To reveal the role played by diffusion
effects, we also plot the time evolution of the density of
independent MTs, for which one neglects any spatial variation
of the tubulin concentration ct.

Below the threshold, the density of MTs rapidly settles at
some steady-state value smaller than the one corresponding to
the maximal coverage of the centrosome. This happens even
in the case of independent growth; however, the asymptotic
value is markedly decreased by the diffusion effects: it takes a
relatively long time for “fresh” GTP-tubulin to diffuse into the
depleted region or for GDP-tubulin to regenerate back to the
GTP form. Above the threshold concentration c.,, the density
of MTs quickly converges to the complete coverage for inde-
pendent growth, while in the presence of tubulin depletion the
convergence is very slow; when observed on experimental time
scales (5-20 min), the density of MTs may even give the
impression of “saturating” at some level below the maximum
(especially for a finite resolution of experimental measure-
ments of p; see ref. 5).

This finite time effect is also emphasized in Fig. 3B, which
shows the dependence of the MT density on the initial
concentration c}. Again, by comparing the solutions of diffu-
sion equations with the case of independent MTs, we see—for
the typical times of experiments—that the density of MTs is

1
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limited by diffusion effects for concentrations well above the
threshold concentration ¢, while in the infinite time limit
(obtained through an appropriate extrapolation) this is only
the case below ccr.

It is worth noting that the general aspect of these curves
closely agrees with the experimental data reported for MT
asters growing in pure tubulin solutions (5, 15). More quan-
titative experiments in tubulin solutions or cell extracts should
allow for a detailed comparison with the predictions of our
calculations.

Conclusions: Biochemical Regulation Versus
Diffusion Effects

Although the results presented in Fig. 3 clearly show that the
diffusion strongly influences the assembly of dense MT sys-
tems (as opposed to isolated MTs), one could still argue that
such diffusion effects can be neglected compared with the
biochemical regulation mechanisms. As discussed in Forma-
tion of Mitotic Microtubule Asters, biochemical mechanisms are
important in regulation of the length distribution of assembled
MTs: during the transition from interphase to mitosis the
active kinases transform long MTs into shorter and more
dynamic ones by changing the parameters of dynamic insta-
bility (1). Similarly, the cdc2 cyclin kinases could control the
number of MTs by increasing nucleating activity of the cen-
trosomes. The simplest way in which this might happen is
through changes in the number of active nucleation sites, either
through assembly of new nucleating complexes [built with
v-tubulin (16) and associated proteins (17, 18)] or through
activation of some preexisting sites. To try to compare the
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FiG. 4. Mean-field results for surface density of MTs, p, at experimental time scales (S min) as a function of total density of nucleation sites
so for different values of initial GTP-tubulin concentration. (Insef) Same plots in the infinite time limit. In the case of independent growth, one
expects the density of MTs to be site-limited and to increase linearly with the available density of nucleation sites. However, these curves clearly
show that in the presence of diffusion a crossover exists from a site-limited density of MTs to a diffusion-limited regime, where the density of MTs
is almost independent of the density of nucleation sites. For finite times, this crossover exists for values of ¢ both above and below the critical
concentration for unbounded growth, while in the infinite time limit it exists only below the threshold.
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relative importance of diffusive and biochemical effects, we
have thus varied the density of nucleation sites so on the
centrosome. Using the mean-field theory, we find (Fig. 4) that
in general there exist two regimes of aster behavior: (i) for
small sp a “site-limited” regime in which the MT number is
solely determined by the number of active sites; (if) for larger
so a “diffusion-limited” regime in which the number of MTs
growing out of the centrosome is smaller than and almost
independent of the number permitted by active nucleation
sites. (In infinite time limits this last regime is present only for
¢ smaller than the threshold value c.;, but for typical time
scales of cellular events or in vitro experiments both regimes
exist for all ¢}.) The existence of a crossover between these two
regimes is also confirmed in three-dimensional simulations. In
Fig. 2C, we plot the average number of nucleated MTs for four
different values of so for the case of bounded MT growth. We
find that this number does not increase linearly with so as
expected in the absence of diffusion effects, but instead it levels
off to a near-constant value.

An important point is that for realistic values of dynamic
parameters and tubulin concentrations this crossover can
happen for very small values of the surface MT density p. The
crossover values of p being of the order of 0.01 (typical for
lower curves in Fig. 4) correspond to roughly a hundred MTs
[estimated as (R/d)?p, where R is the centrosome radius, while
d is the MT cross-section radius]. Therefore, for the MT asters
that contain more than 10-1000 MTs, it is safe to say that the
diffusion effects may not a priori be neglected and in fact in
many cases they may be dominant. Fig. 4 suggests also a
conceptually simple way of distinguishing between the site-
limited and diffusion-limited regimes. By progressively block-
ing the nucleation sites and thus decreasing sp—e.g., through
the use of appropriate antibodies (19, 20)—one would linearly
decrease the number of nucleated MTs only in the site-limited
regime; in contrast, in the diffusion-limited regime the number
of nucleated MTs would stay practically constant.

Obviously, our mathematical model cannot demonstrate
that it is the diffusion effects, and in particular the tubulin
depletion near the centrosome, that determine the number of
MTs growing in an aster or a mitotic spindle. However, it shows
that even in the presence of strong biochemical regulation the
diffusion-induced effects may play an important role in the
assembly of cytoskeletal fibers, as they do in many simpler
physical systems. Therefore, while studying the biochemistry
and the cell biology of the centrosomes and their regulation
during the cell cycle, one must also keep in mind the underlying
physical phenomena.
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